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Introduction 
 
Your project involves using Bezier curves for graphic design, numerical differentiation, 
and iterative optimization of a model using least squares minimization by gradient 
descent.  
 
Project Tasks 
 
Task 1 (35 points) 
 
We briefly discussed Bezier curves in class and your first task is to convert Algorithm 3.6 
on p. 162 into a working program. Write a general-purpose function, get_coeffs, that 
accepts two endpoints (x0, y0) and (x1, y1), and two associated control points (α0, β0) and 
(α1, β1). Your function will generate a list of the coefficients needed to define the cubics 
given by Eqs. (3.24) and (3.25) in the form shown in the equation under Algorithm 3.6. 
 
Task 2 (35 points) 
 
Write a second function, make_bezier, that represents the Bezier curve as a function. 
This function must accept a list of coefficients as produced by the above function and a t 
value between 0 and 1, and returns an (x, y) pair corresponding to the position of the 
curve at that t value. Remember, t runs from 0 to 1 along the whole curve, although t=0.5 
will not necessarily mean you are half way along the curve. 
 
You will test your code using Exercises 3 and 4 from Section 3.5. Plot each Bezier curve 
making up the entire curve that your code generates using the above functions. The 
cubics for Ex. 3 are given in the solutions in the back of the book, and the result of Ex. 4 
is self-evident. 
 
Task 3 (30 points) 
 
This task is not directly related to Bezier curves, but is used in the extra credit portion of 
the project if you choose to attempt it. Section 4.1 presents a variety of approximate 
numerical derivatives to a scalar function f(x), for a given step size h. Fixing h to be 1e-3, 
write a function df that returns the approximate gradient at x0 given f and scalar x0 as 
arguments, using the three point central difference formula. Test your gradient function 
on f(x) = 2x2 and g(x) = exp(3x) at x = 3. Demonstrate correctness using calculus. 



Extra credit portion 
 
In these tasks we will explore a more common form of least squares minimization than 
you encountered in class. The goal will be to automatically find the “best” Bezier curve 
to fit a set of sample data points instead of by trial and error. For many nonlinear 
problems, there are no closed-form analytic expressions for the parameters of the best 
fitting function, i.e. no Normal Equations for coefficients. Instead, an iterative process 
must be used, along the lines of Newton's Method-like iteration. Since the slope of the 
error function is also generally not available in closed form, we will approximate that 
using the numerical gradient function you defined in Task 2 above. 
 
Task X1 (10 points) 
 
We will use a simple and very intuitive local optimization method known as "Gradient 
Descent". You may read about it at the Wikipedia page 
en.wikipedia.org/wiki/Gradient_descent, although that is a more advanced treatment than 
we need. Briefly, this method attempts to minimize an error function f(x) from some 
starting position x0 in the following way. The local gradient of f is computed at x0 and 
moving a small distance ε backwards along the gradient generates a new point x1. In a 
multidimensional problem, we descend along the steepest direction in the error function 
“landscape”, but for our simple case we just take steps to either increase or decrease x 
appropriately since f is a scalar function only. The steeper the gradient, the more quickly 
we descend. We stop when the gradient becomes sufficiently flat that we accept the x 
value as a local minimum. We will assume that our initial conditions will lie in the 
convergence region for the minima that we wish to find. 
 
Fixing ε to be 1e-1, write a function that performs gradient descent using the stopping 
condition that successive x values differ by less than xtol=1e-4 or if there are more than 
500 iterations. Test your algorithm on the error function E(x) = (x-2)2 from a starting 
point x = 4. 
 
Questions: 

1) What is the gradient at this initial point? 
2) What should be the solution? 
3) Does your code find it? How quickly? 

 
Task X2 (10 points) 
 
We will now use this iterative optimization method to solve the following problem. 
Consider the data points (xi, yi) for i = 0,…,6 that are sampled from the shape of a cursive 
'v' character traced from a document: [0.284, 1.0], [0.305, 0.65], [0.317, 0.3], [0.32, 0.0], 
[0.335, 0.25], [0.338, 0.6], [0.32, 1.0]. 
 
Plot lines between these points on a graph with axes limits [0.26, 0.38] in x and [-0.1, 1.1] 
in y to see the approximate shape. 
 



By trial and error, a graphic designer of PostScript computer fonts has already 
painstakingly found one Bezier curve B1(t) that describes the left part of the character, 
but has not completed a second curve B2(t) for the right side of the character. Curve B1 is 
specified by the endpoint coordinates [0.284, 1], [0.32, 0] and control point coordinates 
[0.305, 0.7], [0.32, 0.4]. Similarly, curve B2 is currently specified by [0.32, 0], [0.32, 1] 
and [0.38, 0.3], [0.34, 0.7]. 
 
Plot each of the Bezier curves using your functions from Tasks 1 and 2 above and also 
plot the data points to see how well each matches. Graphically, what is the problem 
remaining with B2? We will discover that the lower control point's alpha value (x 
coordinate of the control point) is not a good choice. 
 
Write a function make_B2 that takes just alpha as an argument and uses your code from 
Task 1 to return a new version of B2, keeping the remaining endpoints and control point 
coordinates the same. From the above data, your initial value of α0 is therefore 0.38. 
 
Write a new error function that takes an α0 value as input and returns the error between 
the data point targets and B2. Measure this error as the sum of the squares of the distance 
between the data points (x4, y4), (x5, y5) and the Bezier curve B2 at two sample points 
specified by t=0.3 and t=0.6. For instance, in pseudo-code it might look like this: 
 
function E(alpha0) 
    B2 = make_B2(alpha0) 
    p = B2(0.3), q = B2(0.6) 
    return (px-x4)**2 + (qy-y4)**2 + (px-x5)**2 + (qy-y5)**2 

 
Questions: 

1) What is the error at the initial point? 
2) What is the gradient of your error function at the initial point? 
3) Do you expect this will lead to a rapid convergence to a solution using gradient 

descent? Why? (Compare to the rate of convergence for your test problem in X2.) 
 
Task X3 (10 points) 
 
Use this function as the error function for an application of your gradient descent 
algorithm from Task X1 using the same tolerances. Demonstrate that this fixes the 
problem with B2 by plotting successive iterations of the B2 curve from within E(α0) and 
finding that the final curve matches the data to produce the 'v' character correctly. You 
might like to plot the p, q points as dots from inside your error function to show their 
progress at each iterate. 
 
Questions: 

1) How fast does your algorithm achieve its optimal solution? 
2) Plot a graph of the one-dimensional error landscape as a function of α0 ranging 

from 0 to 10. What shape does it resemble? (This is the shape that optimization 
algorithms are always best suited for!) 

3) Is it reasonable to expect that we have found a global minimum? Why? 



Submission, grading, and advice 
 
Your numerical grade will be based on your documented success in writing the code to 
solve the project tasks, and any other analysis you wish to include. That involves writing 
a short report of no more than 6 pages typeset, including no more than 8 modestly sized 
embedded figures (wherever appropriate to your explanation), and not including source 
code (which you may list in an appendix if you wish). 
 
The professionalism of your technical writing is one of the assessment criteria, and 
includes being able to state ideas concisely, to use clear logic, and to take advantage of 
mathematical concepts you have learned in this course when appropriate. You will 
submit it electronically as a single document (PDF preferred). You may submit a hand-
written paper copy of your report if you prefer, but see the Deadlines section below. 
 
Your grade will also reflect an evaluation of your code. Your goal is to use clear logical 
principles to break down the tasks and to comment and describe your code in your report 
so that I can easily comprehend your solution. If I judge your code to be particularly 
difficult to comprehend or untrustworthy in its assumptions then you will lose points. Use 
of modularity, spacing, and comments helps greatly in this respect. Therefore, you will 
also submit your original source code file(s) (archived as appropriate depending on how 
many you have). You may not use any pre-existing library implementations that come 
with Maple, Matlab, or the Python numerical libraries, without modification. All 
algorithms must be your own implementations or versions that you adapt from codes that 
you find in the libraries, the internet or books (including the ones I provided for python) 
written or rewritten in whatever language you are using for this project. 
 
Deadlines: Midnight of Wednesday November 18 if you wish me to give you feedback 
on your report and code before you resubmit a final version. Midnight of Monday 
November 25 is the final deadline. Submissions between those dates will be considered 
final, those thereafter will be graded with zero as per the policies explained in the 
syllabus. Start the project early and speak to me after class and in office hours before you 
get behind in your work. If you prefer to submit a paper copy of your project report I will 
need it submitted no later than the end of class on Monday, November 25. 
 
Help and plagiarism: You are welcome to ask me any questions to clarify your 
understanding of the project tasks, the math, or the programming during office hours or 
by email, but use your common sense and always attempt to solve a problem before 
coming to me with it. Get started early, and don't wait until a few days before the 
deadline to realize that you need clarification on a range of issues. 
 
You may discuss the problem solving and any language-learning issues with others but 
both your code and your report must be entirely your own work (the GSU policy on 
plagiarism applies, as described in the syllabus). 
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Objectives 

 

 The primary objectives of this project were to experiment with Bezier curves,  

 

numerical differentiation, and least squares minimization using gradient descent.  Several  

 

computer programs were written and modified to achieve the objectives of this project.   

 

In addition to the programs, several plots were made to analyze and compare the output. 

 

 

 

Bezier Curves 

 

 A Bezier curve is a type of parametric curve that allows complex shapes to be  

 

represented in mathematical graphing, computer graphics, animation, and simulation  

 

programs.  The generation of the curve requires two endpoints to be input along with a  

 

pair of control points.   

 

To begin experimenting with Bezier curves it was first necessary to write a simple  

 

computer program in Python 2.6 to accept the required data and to generate a plot of the  

 

curve.  The program that was written had two main functions, get_coeffs and  

 

make_bezier. 

 

The get_coeffs function took data describing the endpoints and the control points  

 

and used the data to generate a set of cubics that represent a set of coefficients that define  

 

the Bezier curve.  The cubics were returned by the function and used by the make_bezier  

 

function. 

 

The make_bezier function took in a t value between 0 and 1, and the cubics  

 

mentioned above, and generated a pair of (x, y) coordinates that corresponded to the  

 

position of the curve at the designated t value. 

 

The output from the make_bezier function was stored in two lists, plotx and ploty,  
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and the data from these lists was used to plot the curves generated.  

 

Once the computer program was written it was tested using problems from page  

 

163 of the textbook.  The results follow: 

 

Problem 3a: 

 

Input:  Start (1,1) 

 Control (1.5, 1.25) 

 End (6, 2) 

 Control (7, 3) 

 

  
 

 

Problem 3b: 

 

Input:  Start (1, 1) 

Control (1.25, 1.5) 

End (6, 2) 

Control (5, 3) 
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Problem 3c: 

 

Input:  Start (0, 0) 

 Control (0.5, 0.5) 

 Midpoint (4, 6) 

 Entering Control (3.5, 7) 

 Exiting Control (4.5, 5) 

 End (6, 1) 

 Control (7, 2) 
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Problem 3d: 

 

Input:  Start (0, 0) 

 Control (0.5, 0.5) 

 Mid 1 (2, 1) 

 Entering Control (3, 1) 

 Exiting Control (3, 1) 

 Mid 2 (4, 0) 

 Entering Control (5, 1) 

 Exiting Control (3, -1) 

 End (6.5, -0.25) 

 
 

 

Problem 4 used the following table for input and was intended to approximate the shape 

of a cursive N. 

 

i X Y Α B A’ B’ 

0 3 6 3.3 6.5   

1 2 2 2.8 3.0 2.5 2.5 

2 6 6 5.8 5.0 5.0 5.8 

3 5 2 5.5 2.2 4.5 2.5 

4 6.5 3   6.4 2.8 
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The resulting program was able to generate some good results, although the initial runs  

 

required some adjustments.  The textbook uses absolute coordinates for the control values  

 

and my program was written to use relative coordinates.  My initial problems were  

 

mostly a matter of becoming familiar with the differences between the textbook and the  

 

requirements of my code.  In the end the Besier curves generated seem pretty good,  

 

although the N from Problem 4 is a bit stretched and the third segment makes a  

 

rather sharp transition from segment 2.  I tried to smooth the curve out by adjusting the  

 

control coordinates but the result was always worse than what the table values provided. 

 

 

 

Central Difference Formula 

 

 The next task was to write a gradient function called df by using a three point  

 

central difference formula.  The gradient was approximated by using formula 4.5 on page  

 

171 of the textbook.  The value of h was specified to be 1e-3 and the function was tested  

 

using f(x) = 2x
2
, and g(x) = exp(3x), where x = 3. 

 



 7

 Using calculus the gradient of the first function is 12 when x = 3 and this is  

 

exactly the same as the computer program’s result.  The second function is 3exp(9) which  

 

is equal to 24309.25178 and the computer program’s result was 24309.2882466.  The  

 

error associated with the second function was a bit larger than I expected. I was expecting  

 

the error to be no larger than h, although the error associated with this technique of  

 

numerical differentiation is O(h
2
).  

 

 

Gradient Descent 

 

 A small function was written to perform gradient descent using a tolerance value  

 

and a loop counter as stopping conditions.  The tolerance value was 1e-4 and the loop  

 

counter was 500.  The function provided to test the function was E(x) = (x-2)
2
, starting at  

 

x = 4.  From algebra it can be seen that the global minimum of the equation exists at 2.   

 

The function found the value of 2.000332307 in 39 iterations. 

 

 

 

Iterative Optimization 

 

 A series of points were provided which represented sample points from a graph in  

 

the shape of a cursive v.  These points were plotted to show the approximate shape of the  

 

figure.  Coordinate points for a Bezier curve labeled B1 were then provided to represent  

 

the first half of the figure.  A partial solution for the second curve labeled B2 was also  

 

provided.  The original set of points and the two curves are shown in the following plot. 
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The original sampled points can be seen in green and the two curves B1 and B2 can be  

 

seen in blue.  Neither B1 nor B2 fit the given data and after some examination, I 

discovered that I had made a sign error in alpha1 for B1.  The corrected plot shows the 

result.  

 

  
 

 

It was given that the control coordinate alpha0 was the problem causing B2  

 

to bow outward. 
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 In order to find an optimal solution, a new function was written to calculate  

 

values for alpha0 while leaving the other coordinates unchanged.  This function was  

 

called make_B2 and it accepted the value of alpha0 as input and returned the appropriate  

 

cubic value.   

 

 An error function war written called Err and it was used to calculate the error  

 

associated with various values for alpha0.  This was later applied to the gradient descent  

 

function to find an optimal solution for alpha0.  

 

 An initial value of 0.38 was used for alpha0 and the result was an error value of  

 

0.226725.  The gradient at the initial point was found to be 2.6424.  This should result in  

 

a rapid convergence to an optimal solution because the steeper the gradient, the faster the  

 

rate of convergence.  This is one of the advantages of the gradient descent method. 

 

 I was unable to find an optimal solution using the computer program that I wrote.   

 

I think that this is due to errors in the Err function and in the my implementation of  

 

make_B2. 

 

 The gradient descent function should have been able to quickly find and optimal  

 

value for alpha0.  I found a reasonable solution by trial and error at (0.351, 0.3).  The  

 

closest solution that I found with my program is shown in the plot. 
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This is only marginally better than the original data points.  The make_B2 function needs  

 

to be rewritten to calculate both x and y values for the control coordinate.  In its current  

 

implementation it only calculates the x value. 

 

 

 For the most part though, this project yielded some very good results and I think  

 

that it was very worthwhile in helping to deepen my knowledge of approximation  

 

methods. 

 

 

 

 

 




